Converging bounds for the eigenvalues of multiminima potentials in two-dimensional space

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys. A: Math. Gen. 296967
(http://iopscience.iop.org/0305-4470/29/21/027)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 02/06/2010 at 03:03

Please note that terms and conditions apply.

Converging bounds for the eigenvalues of multiminima potentials in two-dimensional space

H Taşeli and R Eid
Department of Mathematics, Middle East Technical University, 06531 Ankara, Turkey

Received 29 May 1996

Abstract

The eigenvalue problem in $L_{2}\left(\mathbb{R}^{2}\right)$ of Schrödinger operators with a polynomial perturbation has been replaced by one corresponding to the system confined in a box Ω with impenetrable walls. It is shown that the Dirichlet and the von Neumann problems in $L_{2}(\Omega)$ generate upper and lower bounds, respectively, to the eigenvalues of the unbounded system. To illustrate the method, rapidly converging two-sided bounds for the energy levels of two- and three-well oscillators are presented, using simple trigonometric basis functions.

1. Introduction

The two-dimensional perturbed oscillator Hamiltonian in the dimensionless form

$$
\begin{equation*}
\mathcal{H}=-\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}+x^{2}+y^{2}+\varepsilon Q(x, y) \tag{1.1}
\end{equation*}
$$

has received attention, especially from the viewpoint of perturbation theory due to its applications in quantum field theory and molecular spectroscopy. Regarding ε as a perturbation parameter, it has been well known, since the late 1960s, that the resulting perturbation series are divergent for all $\varepsilon>0[1,2]$. The quartic oscillator,

$$
\begin{equation*}
Q(x, y)=a_{20} x^{4}+2 a_{11} x^{2} y^{2}+a_{02} y^{4} \tag{1.2}
\end{equation*}
$$

is the most studied system of this kind, where the $a_{i j}$ are the coupling constants. Several methods of finding estimates of the eigensolutions of (1.2) have been introduced, including large order and inner product perturbation theories [3-6], renormalized perturbation and power series [6,7], and modified perturbative and moment methods [8-10]. The inner product technique was also applied to potentials other than the quartic oscillators [11,12].

Almost all these approaches start with the use of the classical harmonic oscillator solution and deal with renormalized convergence parameter and/or resummation methods such as Padé approximants to obtain satisfactory results, owing to the divergent nature of the perturbation problem being considered. In any case, however, an obvious accuracy loss is noticeable for strong anharmonic couplings. This can easily be attributed to the fact that a harmonic-like reference function does not represent properly the asymptotic behaviour of the true wavefunction.

In a recent article [13] by the same authors, it was shown numerically that the Dirichlet boundary value problem,

$$
\begin{equation*}
\left[-\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}+V(x, y)\right] \Psi=E \Psi \quad \Psi \in L_{2}(\Omega) \tag{1.3}
\end{equation*}
$$

where the wavefunction Ψ vanishes over the boundaries of a sufficiently large finite rectangular region Ω, can be effectively used in calculating the spectrum of the usual Schrödinger equation defined in \mathbb{R}^{2} with the quartic and the sextic perturbations. Such a truncation of the unbounded domain of the problem was justified analytically in [14]. However, having no error estimates at hand may raise a question about the accuracy of the numerical results, especially in the case of multiwell oscillators with nearly degenerate minima.

In this paper, we deduce in section 2 that the eigenvalues of the Dirichlet and the von Neumann problems are upper and lower bounds, respectively, for the eigenvalues of the relevant unbounded system. Section 3 presents complete orthonormal basis sets in terms of circular functions satisfying the boundary conditions of Dirichlet and von Neumann types to be utilized in the Rayleigh-Ritz variational method. In section 4, we attack the more challenging problem of multiwell potentials in two dimensions, reporting rapidly converging exact bounds to the eigenvalues for a wide range of the coupling constants. The last section is devoted to the discussion of the numerical results and the concluding remarks.

2. Dirichlet and von Neumann problems

Let us consider the enclosed Schrödinger equation

$$
\begin{equation*}
\mathcal{L} \Psi(x, y)=0 \quad \mathcal{L}=-\nabla^{2}+V(x, y)-E \quad(x, y) \in \Omega \tag{2.1}
\end{equation*}
$$

where Ω has been specified to be a square region such that

$$
\begin{equation*}
\Omega=\{(x, y): x \in(-\ell, \ell) \text { and } y \in(-\ell, \ell)\} \tag{2.2}
\end{equation*}
$$

For a nice analysis, we assume that $V(x, y)$ is a well (multiwell) potential having both reflection and interchange symmetries. The end conditions imposed on the wavefunction $\Psi(x, y)$ are

$$
\begin{equation*}
A \Psi_{x}(\mp \ell, y)+B \Psi(\mp \ell, y)=0 \tag{2.3}
\end{equation*}
$$

for all y, and

$$
\begin{equation*}
A \Psi_{y}(x, \mp \ell)+B \Psi(x, \mp \ell)=0 \tag{2.4}
\end{equation*}
$$

for all x, where the subscripts denote partial derivatives. The constants A and B are either zero or unity so that a Dirichlet or a von Neumann boundary value problem is under discussion according to whether A or B are equal to zero. If we regard the eigenfunctions and the eigenvalues of (2.1) as functions of the boundary parameter ℓ,

$$
\begin{equation*}
\Psi=\Psi(x, y ; \ell) \quad E=E(\ell) \tag{2.5}
\end{equation*}
$$

then the eigensolutions of the unbounded Schrödinger equation corresponding to (2.1) may formally be obtained through the limit operations

$$
\begin{equation*}
\Psi_{(\infty)}(x, y)=\lim _{\ell \rightarrow \infty} \Psi(x, y ; \ell) \quad E_{(\infty)}=\lim _{\ell \rightarrow \infty} E(\ell) . \tag{2.6}
\end{equation*}
$$

In what follows, equation (2.1) can be differentiated with respect to ℓ to give a result

$$
\begin{equation*}
\Psi \frac{\mathrm{d} E}{\mathrm{~d} \ell}=\mathcal{L} \Psi_{\ell} \tag{2.7}
\end{equation*}
$$

from which, on multiplying by Ψ and integrating over Ω, it follows immediately that

$$
\begin{equation*}
\frac{\mathrm{d} E}{\mathrm{~d} \ell}=\left\langle\mathcal{L} \Psi_{\ell}, \Psi\right\rangle \tag{2.8}
\end{equation*}
$$

where we have assumed that the wavefunction is normalized so that $\langle\Psi, \Psi\rangle=1$. If \mathcal{L}^{\star} stands for the formal adjoint of the differential operator $\mathcal{L},(2.8)$ can then be written in the form

$$
\begin{equation*}
\frac{\mathrm{d} E}{\mathrm{~d} \ell}=\text { boundary terms }+\left\langle\Psi_{\ell}, \mathcal{L}^{\star} \Psi\right\rangle \tag{2.9}
\end{equation*}
$$

Note that the last inner product vanishes from (2.1) since \mathcal{L} is formally self-adjoint, i.e. $\mathcal{L}^{\star}=\mathcal{L}$. Thus we have

$$
\begin{equation*}
\frac{\mathrm{d} E}{\mathrm{~d} \ell}=\left.\int_{-\ell}^{\ell}\left(\Psi_{x} \Psi_{\ell}-\Psi \Psi_{x \ell}\right)\right|_{x=-\ell} ^{\ell} \mathrm{d} y+\left.\int_{-\ell}^{\ell}\left(\Psi_{y} \Psi_{\ell}-\Psi \Psi_{y \ell}\right)\right|_{y=-\ell} ^{\ell} \mathrm{d} x \tag{2.10}
\end{equation*}
$$

The use of the total differential of $\Psi(x, y ; \ell)$,

$$
\begin{equation*}
\mathrm{d} \Psi=\Psi_{x} \mathrm{~d} x+\Psi_{y} \mathrm{~d} y+\Psi_{\ell} \mathrm{d} \ell \tag{2.11}
\end{equation*}
$$

allows the expression of (2.10) in a more informative form. In fact, if $x=x(\ell)$ then $\mathrm{d} x=(\mathrm{d} x / \mathrm{d} \ell) \mathrm{d} \ell$ and hence

$$
\begin{equation*}
\mathrm{d} \Psi=\left(\Psi_{\ell}+\frac{\mathrm{d} x}{\mathrm{~d} \ell} \Psi_{x}\right) \mathrm{d} \ell+\Psi_{y} \mathrm{~d} y \tag{2.12}
\end{equation*}
$$

showing that $\Psi_{\ell}=\Psi_{\ell}+(\mathrm{d} x / \mathrm{d} \ell) \Psi_{x}$, where on the left-hand side Ψ_{ℓ} is to be regarded as the partial derivative of the function $\Psi\{x(\ell), y ; \ell\}$ of ℓ and y only. Likewise for $y=y(\ell)$ we infer that

$$
\begin{equation*}
\mathrm{d} \Psi=\Psi_{x} \mathrm{~d} x+\left(\Psi_{\ell}+\frac{\mathrm{d} y}{\mathrm{~d} \ell} \Psi_{y}\right) \mathrm{d} \ell \tag{2.13}
\end{equation*}
$$

so that

$$
\begin{equation*}
\Psi_{\ell}=\Psi_{\ell} \mp \Psi_{x} \quad \text { and } \quad \Psi_{\ell}=\Psi_{\ell} \mp \Psi_{y} \tag{2.14}
\end{equation*}
$$

when $x=\mp \ell$ and $y=\mp \ell$, respectively. By means of these operational relations, differentiating the boundary conditions in (2.3) and (2.4) with respect to ℓ now yields the equations

$$
\begin{equation*}
A\left[\Psi_{x \ell}(\mp \ell, y) \mp \Psi_{x x}(\mp \ell, y)\right]+B\left[\Psi_{\ell}(\mp \ell, y) \mp \Psi_{x}(\mp \ell, y)\right]=0 \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
A\left[\Psi_{y \ell}(x, \mp \ell) \mp \Psi_{y y}(x, \mp \ell)\right]+B\left[\Psi_{\ell}(x, \mp \ell) \mp \Psi_{y}(x, \mp \ell)\right]=0 \tag{2.16}
\end{equation*}
$$

As a result, in the case of the problem (2.1) with the prescribed Dirichlet conditions, $A=0$ and $B=1$, substituting (2.15) and (2.16) into (2.10) leads to
$\frac{\mathrm{d} E}{\mathrm{~d} \ell}=-\int_{-\ell}^{\ell}\left[\Psi_{x}^{2}(\ell, y)+\Psi_{x}^{2}(-\ell, y)\right] \mathrm{d} y-\int_{-\ell}^{\ell}\left[\Psi_{y}^{2}(x, \ell)+\Psi_{y}^{2}(x,-\ell)\right] \mathrm{d} x$
which may be written in the form

$$
\begin{equation*}
\frac{\mathrm{d} E}{\mathrm{~d} \ell}=-4 \int_{-\ell}^{\ell} \Psi_{u}^{2}(\ell, u) \mathrm{d} u \tag{2.18}
\end{equation*}
$$

whenever the wavefunction possesses reflection and interchange symmetries. In any case, however, $\mathrm{d} E / \mathrm{d} \ell$ is negative implying that the eigenvalues of the Dirichlet problem, $E_{(u)}$ say, decreases monotonically to its limit $E_{(\infty)}$ as ℓ increases.

On the other hand, if the problem being considered obeys the boundary conditions of the von Neumann type, i.e. $A=1$ and $B=0$, we then find in a similar fashion that

$$
\begin{align*}
& \frac{\mathrm{d} E}{\mathrm{~d} \ell}=\int_{-\ell}^{\ell}\left[\Psi(\ell, y) \Psi_{x x}(\ell, y)+\Psi(-\ell, y) \Psi_{x x}(-\ell, y)\right] \mathrm{d} y \\
& \quad+\int_{-\ell}^{\ell}\left[\Psi(x, \ell) \Psi_{y y}(x, \ell)+\Psi(x,-\ell) \Psi_{y y}(x,-\ell)\right] \mathrm{d} x . \tag{2.19}
\end{align*}
$$

Taking advantage of the symmetry prescriptions we obtain
$\frac{\mathrm{d} E}{\mathrm{~d} \ell}=\left.2 \int_{-\ell}^{\ell}\left\{\Psi(x, y) \nabla^{2} \Psi(x, y)\right\}\right|_{y=\ell} \mathrm{d} x=\left.2 \int_{-\ell}^{\ell}\left\{\Psi(x, y) \nabla^{2} \Psi(x, y)\right\}\right|_{x=\ell} \mathrm{d} y$
which reduces to
$\frac{\mathrm{d} E}{\mathrm{~d} \ell}=\left.2 \int_{-\ell}^{\ell}\left\{[V(x, y)-E] \Psi^{2}(x, y)\right\}\right|_{y=\ell} \mathrm{d} x=\left.2 \int_{-\ell}^{\ell}\left\{[V(x, y)-E] \Psi^{2}(x, y)\right\}\right|_{x=\ell} \mathrm{d} y$
from (2.1). Clearly $\mathrm{d} E / \mathrm{d} \ell$ is positive provided that ℓ is beyond the classical turning points. Therefore, the eigenvalues of the von Neumann problem, $E_{(l)}$ say, approaches $E_{(\infty)}$ from below as ℓ increases.

As a consequence, the Dirichlet and von Neumann problems generate error bounds to the eigenvalues $E_{(\infty)}$ required, in the sense that

$$
\begin{equation*}
E_{(l)} \leqslant E_{(\infty)} \leqslant E_{(u)} . \tag{2.22}
\end{equation*}
$$

All that is left now is the establishment of an efficient algorithm to solve the Schrödinger equation (2.1) accompanying with both Dirichlet and von Neumann conditions, in estimating rigorous upper and lower bound eigenvalues, respectively.

3. Trigonometric basis sets

The Schrödinger equation for a free particle

$$
\begin{equation*}
-\nabla^{2} \Psi=\lambda \Psi \quad \Psi \in L_{2}(\Omega) \tag{3.1}
\end{equation*}
$$

is considered to construct a complete orthonormal basis for the space $L_{2}(\Omega)$. Our approach is guided by recent successful variational studies of anharmonic oscillators in one and two dimensions [15-17, 13]. It is an easy matter to show that Laplace's operator in (3.1) has the normalized sequence of eigenfunctions, for $m, n=0,1, \ldots$,

$$
\begin{align*}
& \phi_{m n}(x, y)=\frac{1}{\ell} \cos \left[\left(m+\frac{1}{2}\right) \frac{\pi}{\ell} x\right] \cos \left[\left(n+\frac{1}{2}\right) \frac{\pi}{\ell} y\right] \tag{3.2a}\\
& \phi_{m n}(x, y)=\frac{1}{\ell} \cos \left[\left(m+\frac{1}{2}\right) \frac{\pi}{\ell} x\right] \sin \left[(n+1) \frac{\pi}{\ell} y\right] \tag{3.2b}\\
& \phi_{m n}(x, y)=\frac{1}{\ell} \sin \left[(m+1) \frac{\pi}{\ell} x\right] \cos \left[\left(n+\frac{1}{2}\right) \frac{\pi}{\ell} y\right] \tag{3.2c}\\
& \phi_{m n}(x, y)=\frac{1}{\ell} \sin \left[(m+1) \frac{\pi}{\ell} x\right] \sin \left[(n+1) \frac{\pi}{\ell} y\right] \tag{3.2d}
\end{align*}
$$

and

$$
\begin{equation*}
\varphi_{m n}(x, y)=\frac{1}{\ell} \gamma_{m n} \cos \left(m \frac{\pi}{\ell} x\right) \cos \left(n \frac{\pi}{\ell} y\right) \tag{3.3a}
\end{equation*}
$$

$$
\begin{align*}
& \varphi_{m n}(x, y)=\frac{\sqrt{2}}{\ell} \gamma_{m, 0} \cos \left(m \frac{\pi}{\ell} x\right) \sin \left[\left(n+\frac{1}{2}\right) \frac{\pi}{\ell} y\right] \tag{3.3b}\\
& \varphi_{m n}(x, y)=\frac{\sqrt{2}}{\ell} \gamma_{n, 0} \sin \left[\left(m+\frac{1}{2}\right) \frac{\pi}{\ell} x\right] \cos \left(n \frac{\pi}{\ell} y\right) \tag{3.3c}\\
& \varphi_{m n}(x, y)=\frac{1}{\ell} \sin \left[\left(m+\frac{1}{2}\right) \frac{\pi}{\ell} x\right] \sin \left[\left(n+\frac{1}{2}\right) \frac{\pi}{\ell} y\right] \tag{3.3d}
\end{align*}
$$

satisfying Dirichlet and von Neumann conditions, respectively, where

$$
\begin{equation*}
\gamma_{m n}=\left(1+\delta_{m, 0}+\delta_{n, 0}+\delta_{m, 0} \delta_{n, 0}\right)^{-1 / 2} \tag{3.4}
\end{equation*}
$$

in which $\delta_{i j}$ is the Kronecker delta. Henceforth, the basis sets in (3.2) and (3.3) are referred to as (1) u, (2) u, (3) u, (4) u and (1) l, (2) l, (3) l, (4) l, respectively.

The symmetric structure of the problem suggests the decomposition of the spectrum into four subsets. Actually, the sets (1) u, (1) l and (4) ${ }_{u}$, (4) l can be used to determine energy levels with the same parity, i.e. both even or both odd. On the other hand, we may deal with the eigenvalues having different parity, one even and one odd, by means of the sets (2) u, (3) ${ }_{u}$ and (2) ${ }_{l}$, (3) ${ }_{l}$. Hence we can propose as our trial functions

$$
\begin{equation*}
\Psi_{(u)}(x, y)=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} h_{m n} \phi_{m n}(x, y) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi_{(l)}(x, y)=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} f_{m n} \varphi_{m n}(x, y) \tag{3.6}
\end{equation*}
$$

in calculating upper and lower bounds to $E_{(\infty)}, E_{(u)}$ and $E_{(l)}$, of the perturbed Schrödinger equation, respectively, where the $h_{m n}$ and $f_{m n}$ are the linear combination coefficients. The potential function is chosen as a general polynomial of degree $2 M$ of the form

$$
\begin{equation*}
V(x, y)=\sum_{i=1}^{M} v_{2 i} \sum_{j=0}^{i} a_{i-j, j}\binom{i}{j} x^{2(i-j)} y^{2 j} \quad M=1,2, \ldots \tag{3.7}
\end{equation*}
$$

with the coupling constants $v_{2 i}$ and $a_{i-j, j}$. It is obvious that $V(x, y)$ has the reflection symmetries

$$
\begin{equation*}
V(x, y)=V(-x, y)=V(x,-y)=V(-x,-y) \tag{3.8}
\end{equation*}
$$

as well as an interchange symmetry,

$$
\begin{equation*}
V(x, y)=V(y, x) \tag{3.9}
\end{equation*}
$$

when $a_{i-j, j}=a_{j, i-j}$.
Substituting (3.5) into (2.1) now yields the secular equations

$$
\begin{equation*}
\sum_{k=0}^{\infty} \sum_{l=0}^{\infty}\left[H_{k l m n}-E_{(u)} \delta_{k m} \delta_{l n}\right] h_{k l}=0 \quad m, n=0,1, \ldots \tag{3.10}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{k l m n}=\int_{-\ell}^{\ell} \int_{-\ell}^{\ell}\left[-\nabla^{2} \phi_{k l}(x, y)+V(x, y) \phi_{k l}(x, y)\right] \phi_{m n}(x, y) \mathrm{d} x \mathrm{~d} y \tag{3.11}
\end{equation*}
$$

from which it follows that

$$
\begin{gather*}
H_{k l m n}=\sum_{i=1}^{M} v_{2 i}\left(\frac{\ell}{\pi}\right)^{2 i} \sum_{j=0}^{i} a_{i-j, j}\binom{i}{j}\left[R_{k-m}^{(i-j)}+s_{1} R_{k+m+1+p_{1}}^{(i-j)}\right]\left[R_{l-n}^{(j)}+s_{2} R_{l+n+1+p_{2}}^{(j)}\right] \\
+\frac{\pi^{2}}{4 \ell^{2}}\left[\left(2 k+1+p_{1}\right)^{2}+\left(2 l+1+p_{2}\right)^{2}\right] \delta_{k m} \delta_{l n} \tag{3.12}
\end{gather*}
$$

In this definition of $H_{k l m n}$ we have introduced four integer parameters s_{1}, s_{2}, p_{1} and p_{2} to include all four bases in (3.2) such that

$$
\begin{equation*}
 \tag{3.13a}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{1}=s_{2}=-1 \quad p_{1}=p_{2}=1 \tag{3.13d}
\end{equation*}
$$

for the sets (1) u, (2) u, (3) u and (4) u, respectively. Furthermore, the $R_{k}^{(j)}$ denote the simple integrals of the type

$$
\begin{equation*}
R_{k}^{(j)}=\frac{1}{\pi} \int_{0}^{\pi} \xi^{2 j} \cos k \xi \mathrm{~d} \xi \tag{3.14}
\end{equation*}
$$

which may be evaluated both recursively and explicitly. The recursive relation,

$$
\begin{equation*}
k^{2} R_{k}^{(j)}=2 j(-1)^{k} \pi^{2 j-2}-2 j(2 j-1) R_{k}^{(j-1)} \quad j=1,2, \ldots, M \tag{3.15}
\end{equation*}
$$

with the initial condition that $R_{k}^{(0)}=0$, is preferable from a computational point of view [16].

Starting from the solution $\Psi_{(l)}(x, y)$ in (3.6), the variational formulation of the von Neumann problem may be worked out by the same way. The result is again the reduction of the Schrödinger equation to the system of algebraic equations

$$
\begin{equation*}
\sum_{k=0}^{\infty} \sum_{l=0}^{\infty}\left[F_{k l m n}-E_{(l)} \delta_{k m} \delta_{l n}\right] f_{k l}=0 \quad m, n=0,1, \ldots \tag{3.16}
\end{equation*}
$$

where

$$
\begin{gather*}
F_{k l m n}=\sigma \sum_{i=1}^{M} v_{2 i}\left(\frac{\ell}{\pi}\right)^{2 i} \sum_{j=0}^{i} a_{i-j, j}\binom{i}{j}\left[R_{k-m}^{(i-j)}+s_{1} R_{k+m+p_{1}}^{(i-j)}\right]\left[R_{l-n}^{(j)}+s_{2} R_{l+n+p_{2}}^{(j)}\right] \\
+\frac{\pi^{2}}{4 \ell^{2}}\left[\left(2 k+p_{1}\right)^{2}+\left(2 l+p_{2}\right)^{2}\right] \delta_{k m} \delta_{l n} \tag{3.17}
\end{gather*}
$$

with $s_{1}, s_{2}, p_{1}, p_{2}$ being the same as those defined by (3.13), for the von Neumann basis sets in (3.3) as well. Besides, σ is an additional adjustable parameter which should be taken as
$\sigma=\gamma_{k l} \gamma_{m n} \quad \sigma=2 \gamma_{k, 0} \gamma_{m, 0} \quad \sigma=2 \gamma_{l, 0} \gamma_{n, 0} \quad$ and $\quad \sigma=1$
for (1) l, (2) l, (3) l and (4) l, respectively.
For numerical purposes, we naturally truncate the wavefunctions by writing
$\Psi_{(u)}(x, y)=\sum_{m=0}^{N_{u}-1} \sum_{n=0}^{N_{u}-1} h_{m n} \phi_{m n}(x, y) \quad \Psi_{(l)}(x, y)=\sum_{m=0}^{N_{l}-1} \sum_{n=0}^{N_{l}-1} f_{m n} \varphi_{m n}(x, y)$
where $N\left(N_{u}\right.$ or $\left.N_{l}\right)$ is the number of basis elements considered in the expansions. Now equations (3.10) and (3.16) describe finite algebraic systems of order N^{2}. As long as N is finite it may be interesting to point out that recoding the entries defined by $H_{k l m n}$ and $F_{k l m n}$, these systems are expressible in the form of standard matrix eigenvalue problems [13]. To this end, the integer transformation $T, T: \mathbb{N}_{0}^{4} \rightarrow \mathbb{N}^{2}$ defined by
$T=\left\{(i, j) \in \mathbb{N}^{2}: i=m N+n+1\right.$ and $\left.j=k N+l+1 \forall(k, l, m, n) \in \mathbb{N}_{0}^{4}\right\}$
reduces $H_{k l m n}\left(F_{k l m n}\right)$ and $\delta_{k m} \delta_{l n}$ to a matrix $\left[\mathcal{A}_{i j}\right]$ and the identity matrix $\left[\delta_{i j}\right]$ of orders N^{2}, respectively, where $\mathbb{N}=\{1,2, \ldots\}$ is a subset of the set of natural numbers and $\mathbb{N}_{0}=\{0\} \cup \mathbb{N}$. The $\left[\mathcal{A}_{i j}\right]$ turns out to be a symmetric matrix due to the block symmetry of $H_{k l m n}\left(F_{k l m n}\right)$, i.e. $H_{k l m n}=H_{m n k l}\left(F_{k l m n}=F_{m n k l}\right)$. Furthermore, the mapping $S, S: \mathbb{N}_{0}^{2} \rightarrow \mathbb{N}$

$$
\begin{equation*}
S=\left\{j \in \mathbb{N}: j=k N+l+1 \forall(k, l) \in \mathbb{N}_{0}^{2}\right\} \tag{3.21}
\end{equation*}
$$

transforms $h_{k l}\left(f_{k l}\right)$ with $k, l=0,1, \ldots, N-1$ into g_{j} with $j=1,2, \ldots, N^{2}$. Hence we may represent (3.10) and (3.16) in the form

$$
\begin{equation*}
\sum_{j=1}^{N^{2}}\left(\mathcal{A}_{i j}-E \delta_{i j}\right) g_{j}=0 \quad i=1,2, \ldots, N^{2} \tag{3.22}
\end{equation*}
$$

whose diagonalization employing available routines [18] results in the truncated upper and lower bound eigenvalues.

4. Two- and three-well oscillators

The particular example which we first consider in this paper is that of the Schrödinger equation with a quartic anharmonicity where $M=2$ in (3.7). In spite of the possibility of treating this potential in its full generality, we have exploited the interchange symmetry of the coordinates, that is, $a_{10}=a_{01}$ and $a_{20}=a_{02}$, to minimize the number of coupling constants. Thus we take the potential

$$
\begin{equation*}
V\left(x, y ; a, v_{2}, v_{4}\right)=v_{2}\left(x^{2}+y^{2}\right)+v_{4}\left(x^{4}+2 a x^{2} y^{2}+y^{4}\right) \tag{4.1}
\end{equation*}
$$

where $v_{4}>0$ and $a \geqslant-1$ to have a positive quartic perturbation, and hence a well potential. If v_{2} is negative then $V\left(x, y ; a, v_{2}, v_{4}\right)$ describes a double-well potential (figure 1). In such a situation, however, the parameter a should not be equal to -1 since the resulting potential then tends to $-\infty$ along the straight line $y=|x|$.

A linear transformation shows that the eigenvalues of the Schrödinger equation with (4.1) have the scaling relationship,

$$
\begin{equation*}
E\left(a, v_{2}, v_{4}\right)=v_{4}^{1 / 3} E\left(a, Z^{2}, 1\right) \quad Z^{2}=-v_{2} v_{4}^{-2 / 3} \tag{4.2}
\end{equation*}
$$

Figure 1. A two-well oscillator in two dimensions.
where $a>-1$ and $Z^{2}>0$. Therefore, the two-well oscillators may be best characterized by a potential of the form

$$
\begin{equation*}
V\left(x, y ; a, Z^{2}\right)=-Z^{2}\left(x^{2}+y^{2}\right)+x^{4}+2 a x^{2} y^{2}+y^{4} \tag{4.3}
\end{equation*}
$$

containing two effective parameters a and Z^{2}, so that $E=E\left(a, Z^{2}\right)$. Note also that both a and Z^{2} should remain finite. Indeed, if $a \rightarrow \infty$ then we encounter the infinite-field limit Hamiltonian with $V(x, y)=2 x^{2} y^{2}$, which is no longer a double-well potential, while if $Z^{2} \rightarrow \infty$ then the resulting equation with $V(x, y)=-x^{2}-y^{2}$ does not define a physical problem.

Furthermore, if we introduce new variables ξ and η such that

$$
\begin{equation*}
\xi=\left(\frac{1}{2} \nu\right)^{1 / 2}(x+y) \quad \eta=\left(\frac{1}{2} \nu\right)^{1 / 2}(x-y) \tag{4.4}
\end{equation*}
$$

the Schrödinger equation is unaltered in form:
$\left[-\frac{\partial^{2}}{\partial \xi^{2}}-\frac{\partial^{2}}{\partial \eta^{2}}-\frac{Z^{2}}{v^{2}}\left(\xi^{2}+\eta^{2}\right)+\xi^{4}+2 \alpha \xi^{2} \eta^{2}+\eta^{4}-E\right] \Psi(\xi, \eta)=0$
where

$$
\begin{equation*}
v=[(1+a) / 2]^{1 / 3} \quad \alpha=(3-a) /(1+a) \tag{4.6}
\end{equation*}
$$

indicating clearly that the range of $a \geqslant 1$ is taken into the interval $(-1,1]$ of the parameter α, which plays in (4.5) the same role with a. The connection between the eigenvalues of the original and the transformed Schrödinger equations,

$$
\begin{equation*}
E\left(a, Z^{2}\right)=v E\left(\alpha, Z^{2} / v^{2}\right) \tag{4.7}
\end{equation*}
$$

now implies the investigation of the problem only for the values of $a \in(-1,1]$, without any loss of generality. For instance,

$$
\begin{equation*}
E\left(3,4^{1 / 3} Z^{2}\right)=2^{1 / 3} E\left(0, Z^{2}\right) \quad E\left(15,4 Z^{2}\right)=2 E\left(-\frac{3}{4}, Z^{2}\right) \tag{4.8}
\end{equation*}
$$

so that we present the numerical results at $a=-\frac{1}{2}, 0, \frac{1}{2}$ and 1 covering the interval of a of the main interest, for a variety of Z^{2} values ranging from 0.001 up to 20 in tables 2-6.

As a second example, we handle the sextic oscillators in (3.7) with $M=3$. This potential is equivalent to
$V(x, y)=v_{2}\left(x^{2}+y^{2}\right)+v_{4}\left(x^{4}+2 a x^{2} y^{2}+y^{4}\right)+v_{6}\left(x^{6}+3 b x^{4} y^{2}+3 b x^{2} y^{4}+y^{6}\right)$
when $V(x, y)=V(y, x)$, namely, $a_{10}=a_{01}, a_{20}=a_{02}, a_{21}=a_{12}$ and $a_{30}=a_{03}$. Obviously, we have a well potential if $v_{6}>0$ and $b \geqslant-\frac{1}{3}$. It may be shown, in analogy with the sextic oscillators in one dimension [16], that the same potential with a non-negative harmonic and a strictly negative quartic couplings, i.e. $v_{2} \geqslant 0$ and $v_{4}<0$ with $a>-1$, possesses three minima provided that $v_{4}^{2}>3 v_{2} v_{6}$ (figure 2). In this case, the resulting three-well potential is bounded below if $b>-\frac{1}{3}$.

Instead of (4.9) we may consider the rescaled potential of the form

$$
\begin{equation*}
V\left(x, y ; a, b, c_{2}, c_{4}\right)=c_{2}\left(x^{2}+y^{2}\right)-c_{4}\left(x^{4}+2 a x^{2} y^{2}+y^{4}\right)+x^{6}+3 b x^{4} y^{2}+3 b x^{2} y^{4}+y^{6} \tag{4.10}
\end{equation*}
$$

for which

$$
\begin{equation*}
a>-1 \quad b>-\frac{1}{3} \quad c_{2}, c_{4}>0 \quad c_{4}^{2}>3 c_{2} \tag{4.11}
\end{equation*}
$$

such that

$$
\begin{equation*}
E\left(a, b, v_{2}, v_{4}, v_{6}\right)=v_{6}^{1 / 4} E\left(a, b, c_{2}, c_{4}\right) \tag{4.12}
\end{equation*}
$$

Figure 2. A three-well oscillator in two dimensions.
where

$$
\begin{equation*}
c_{2}=v_{2} v_{6}^{-1 / 2} \quad c_{4}=-v_{4} v_{6}^{-3 / 4} \tag{4.13}
\end{equation*}
$$

Now making use of the substitutions in (4.4) with μ replaced by ν, we deduce that the Hamiltonian \mathcal{H},

$$
\begin{equation*}
\mathcal{H}\left(x, y ; a, b, c_{2}, c_{4}\right)=-\nabla^{2}+V\left(x, y ; a, b, c_{2}, c_{4}\right) \tag{4.14}
\end{equation*}
$$

admits the similarity properties

$$
\begin{equation*}
\mathcal{H}\left(x, y ; a, b, c_{2}, c_{4}\right)=\mu \mathcal{H}\left(x, y ; \alpha, \beta, c_{2} / \mu^{2}, c_{4} v^{3} / \mu^{3}\right) \tag{4.15}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left(a, b, c_{2}, c_{4}\right)=\mu E\left(\alpha, \beta, c_{2} / \mu^{2}, c_{4} v^{3} / \mu^{3}\right) \tag{4.16}
\end{equation*}
$$

where v and α are the same parameters in (4.6) and

$$
\begin{equation*}
\mu=[(1+3 b) / 4]^{1 / 4} \quad \beta=(5-b) /(1+3 b) \tag{4.17}
\end{equation*}
$$

It is important to notice that β ranges from $-\frac{1}{3}$ to 1 when $b \geqslant 1$. Hence we suffer no loss of generality by setting $b \in\left(-\frac{1}{3}, 1\right]$ as well as $a \in(-1,1]$ to cope with the problem of

Table 1. Convergence rates of lower and upper bound eigenvalues as a function of ℓ, for E_{00} of the two-well potential $V\left(x, y ; a, Z^{2}\right)$ where $a=\frac{1}{2}$ and $Z^{2}=1$.

ℓ	E_{00}	N
2.25	$1.486 / 499$	6
2.75	$1.493278 / 315$	9
3.00	$1.493297105 / 822$	10
3.25	$1.493297475 / 482$	11
3.50	$1.493297478496 / 524$	12
3.75	$1.493297478510209 / 257$	15
4.00	$1.493297478510233435 / 468$	18
4.25	$1.493297478510233451925 / 934$	20
4.40	$1.493297478510233451929801 / 834$	22
4.50	$1.493297478510233451929817302 / 979$	25
4.60	$1.493297478510233451929817638 / 651$	28
4.70	$1.493297478510233451929817644312 / 522$	30

Table 2. Lower and upper bounds to the eigenvalues of the two-well potentials $V\left(x, y ; a, Z^{2}\right)$ at $Z^{2}=0.001$ as a function of a.

a	ℓ	N	n_{x}	n_{y}	$E_{n_{x} n_{y}}$	Basis set
$-\frac{1}{2}$	6.5	28	0	0	$1.9726502648582777453 / 4$	(1) l / u
	6.5	29	0(1)	1(0)	$4.4751627945652225114 / 5$	(2) l / u-(3) l / u
	6.5	30	1	1	$6.6417120949233136219 / 20$	(4) $1 / u$
	6.5	31	0	2	$7.6690590336520404080 / 1$	(1) l / u
	6.5	31	2	0	8.264204890146653 4235/6	(1) l / u
	6.5	31	2(1)	1(2)	$9.8487841206344418300 / 1$	(2) l / u-(3) l / u
	6.5	30	0(3)	3(0)	$12.074103696791181174 / 5$	(2) l / u, (3) l / u
	6.5	30	2	2	$12.968730654846365630 / 1$	(1) l / u
	6.5	30	1	3	$13.151363771658962864 / 5$	(4) $1 / u$
	6.5	30	3	1	$14.367147265069970491 / 2$	(4) l / u
0	4.05	18	0	0	$2.1200000666398707314 / 23$	(1) l / u
	4.15	19	0(1)	1(0)	$4.8587713997369270351 / 3$	(2) $l / u-$ (3) l / u
	4.15	19	1	1	7.597542732833983 3384/8	(4) $1 / u$
	4.20	20	0(2)	2(0)	8.514453 $2105827257098 / 103$	(1) l / u-(1) l / u
	4.15	19	2(1)	1(2)	$11.253224543679782012 / 5$	(2) l / u-(3) l / u
	4.20	20	0 (3)	3(0)	$12.703187588395680274 / 8$	(2) $l / u-$ (3) l / u
	4.15	19	2	2	$14.908906354525580686 / 90$	(1) l / u
	4.20	20	1(3)	3(1)	$15.441958921492736577 / 81$	(4) l / u-(4) l / u
	4.25	21	0 (4)	4(0)	$17.319984396115486195 / 201$	(1) l / u-(1) l / u
	4.20	20	2(3)	3(2)	$19.097640732338535252 / 6$	(2) $l / u-$ (3) l / u
$\frac{1}{2}$	4.05	18	0	0	$2.2402276535541008436 / 40$	(1) l / u
	4.10	18	0(1)	1(0)	$5.1504985218853284660 / 6$	(2) $l / u-$ (3) l / u
	4.10	18	1	1	8.323657717248752 6819/23	(4) l / u
	4.20	20	0	2	$8.7316019932032487822 / 5$	(1) $1 / u$
	4.20	20	2	0	$9.0867326882547323651 / 3$	(1) l / u
	4.10	19	2(1)	1(2)	$12.192229876891851315 / 21$	(2) l / u-(3) l / u
	4.20	20	0 (3)	3(0)	$13.249726188740431482 / 4$	(2) $l / u-$ (3) l / u
	4.20	20	2	2	$16.199816348987009082 / 4$	(1) l / u
	4.15	19	1	3	$16.318297369933702846 / 50$	(4) l / u
	4.15	19	3	1	$17.045270094677392744 / 50$	(4) l / u
1	4.05	18	0	0	$2.3441775455856489362 / 4$	(1) l / u
	4.10	19	$0(1)$	1(0)	$5.3931006352843379891 / 6$	(2) l / u-(3) l / u
	4.10	19	$0(1)$	2(1)	$8.9265553271420817154 / 6$	(1) l / u-(4) l / u
	4.20	20	2	0	9.528384527506382 9889/91	(1) l / u
	4.15	19	0(1)	3(2)	$12.841251032037540350 / 2$	(2) l / u-(3) l / u
	4.15	19	2(3)	1(0)	$13.809389558946551647 / 54$	(2) l / u-(3) l / u
	4.20	20	0(1)	4(3)	$17.075470989981863046 / 50$	(1) l / u-(4) l / u
	4.20	20	2(3)	2(1)	$18.308236791422879338 / 53$	(1) l / u-(4) l / u
	4.20	20	4	0	$18.733224174598178029 / 41$	(1) $1 / u$
	4.20	20	0 (1)	5(4)	$21.587532648351539612 / 21$	(2) $l / u-$ (3) l / u

triple-well potentials. However, our aim is not to overfill the content of the article with any more tabular material by making a systematic investigation over the specified intervals of the coupling constants a, b, c_{2} and c_{4}. As a matter of fact, we present only some specimen calculations in table 7 to verify the applicability of the method to the sextic oscillators with three minima as well.

Table 3. Lower and upper bounds to the eigenvalues of the two-well potentials $V\left(x, y ; a, Z^{2}\right)$ at $Z^{2}=1$ as a function of a. The last column includes the results in [22], where available, for comparison.

a	ℓ	N	n_{x}	n_{y}	$E_{n_{x} n_{y}}$	Basis set	$E_{n_{x} n_{y}}$ in [22]
$-\frac{1}{2}$	6.5	30	0	0	$1.0656049460288257199 / 200$	(1) l / u	
	6.5	30	0(1)	1(0)	$2.8858213191928035836 / 7$	(2) $l / u-$ (3) l / u	
	6.5	30	1	1	$4.3179783367162442592 / 3$	(4) $1 / u$	
	6.5	31	0	2	$5.5399364387248696728 / 9$	(1) l / u	
	6.5	31	2	0	$6.4922196626519529503 / 4$	(1) l / u	
	6.5	31	0 (3)	3(0)	$7.1482029595544463274 / 5$	(2) $l / u-$ (3) l / u	
	6.5	31	2(1)	1(2)	9.788050299308083 9496/7	(2) $l / u-$ (3) l / u	
	6.5	32	1	3	$9.9109385120299130317 / 8$	(4) l / u	
	6.5	32	2	2	9.976698667287598 7063/4	(1) l / u	
	6.5	30	3	1	$11.519392676279759111 / 2$	(4) l / u	
0	4.05	18	0	0	$1.3153060103614302458 / 64$	(1) l / u	$1.3150601036144^{\text {a }}$
	4.20	19	O(1)	1(0)	$3.4921892073000193374 / 80$	(2) $l / u-$ (3) l / u	
	4.25	20	1	1	$5.6690724042386084292 / 4$	(4) l / u	5.66907240423857
	4.25	20	0(2)	2(0)	$6.8215542621437833635 / 44$	(1) l / u-(1) l / u	6.8215542621437
	4.25	21	2(1)	1(2)	8.998437459082372 4551/60	(2) $l / u-$ (3) l / u	
	4.25	20	0 (3)	3(0)	$10.696299125892291163 / 70$	(2) $l / u-$ (3) l / u	
	4.25	20	2	2	$12.327802513926136481 / 3$	(1) l / u	
	4.30	21	1(3)	3(1)	12.873182322830880 257/9	(4) l / u-(4) l / u	12.873182322831
	4.30	21	0(4)	4(0)	$15.030059509858584074 / 83$	(1) l / u-(1) l / u	
	4.25	20	2(3)	3(2)	$16.202547377674644280 / 8$	(2) $l / u-$ (3) l / u	
$\frac{1}{2}$	4.15	19	0	0	$1.4932974785102334518 / 20$	(1) l / u	
	4.20	20	0(1)	1(0)	$3.8899068496611306937 / 40$	(2) $l / u-$ (3) l / u	
	4.20	20	1	1	$6.5948145821647374561 / 3$	(4) l / u	
	4.25	21	0	2	$7.0922666269996380857 / 62$	(1) l / u	
	4.25	21	2	0	$7.5602309632156187530 / 4$	(1) l / u	
	4.20	20	2(1)	1(2)	$10.126150099578332525 / 7$	(2) $l / u-$ (3) l / u	
	4.25	21	0(3)	3(0)	$11.385769262460847676 / 80$	(2) $l / u-$ (3) l / u	
	4.25	21	2	2	$13.797868585986881784 / 8$	(1) l / u	
	4.20	20	1	3	$13.915106190762756469 / 78$	(4) l / u	
	4.20	20	3	1	$14.779052108152612242 / 50$	(4) $1 / u$	
1	4.10	18	0	0	$1.6374879527236908204 / 11$	(1) l / u	1.6374879527233
	4.20	19	0 (1)	1(0)	$4.1996853874863615444 / 6$	(2) $l / u-$ (3) l / u	
	4.15	19	0 (1)	2(1)	$7.3281443880652965481 / 4$	(1) l / u-(4) l / u	7.32814438806529
	4.25	21	2	0	$8.0872075765431704575 / 8$	(1) l / u	8.087207576536
	4.20	19	0(1)	3(2)	$10.883871503101303367 / 71$	(2) $l / u-$ (3) l / u	
	4.25	20	2(3)	1(0)	$12.039932859791980212 / 5$	(2) $l / u-$ (3) l / u	
	4.20	19	0 (1)	4(3)	$14.789805972176726431 / 4$	(1) l / u-(4) l / u	14.7898059721767
	4.20	19	2(3)	2(1)	$16.216922537509726271 / 5$	(1) $l / u-$ (4) l / u	16.21692254
	4.30	22	4	0	$16.716860324044199940 / 3$	(1) l / u	
	4.30	21	0 (1)	5(4)	$18.996019587096235714 / 6$	(2) $l / u-$ (3) l / u	

${ }^{a}$ There is most likely a misprint in this result.

Additional features of the energy levels of the Schrödinger equation for the multiwell oscillators will be discussed in the next section in connection with the numerical results reported.

Table 4. Lower and upper bounds to the eigenvalues of the two-well potentials $V\left(x, y ; a, Z^{2}\right)$ at $Z^{2}=4$ as a function of a. The last column includes the results in [22], where available, for comparison.

5. Results and discussion

In this paper, we calculate the eigenvalues of multiwell oscillators with high accuracy providing rigorous lower and upper bounds. Quite extensive numerical data are given for the double-well potentials in order to understand the typical features of their energy spectra. In the tables ℓ and N denote the boundary parameter and the truncation order of

Table 5. Lower and upper bounds to the eigenvalues of the two-well potentials $V\left(x, y ; a, Z^{2}\right)$ at $Z^{2}=8$ as a function of a.

a	ℓ	N	n_{x}	n_{y}	$E_{n_{x} n_{y}}$	Basis set
$-\frac{1}{2}$	6.9	39	0	0	-53.261836510220 844 870/69	(1) l / u (2) $l / u-$ (3) l / u (4) l / u (1) l / u (2) $l / u-$ (3) l / u (4) l / u (1) l / u (2) l / u-(3) l / u (4) l / u (1) l / u
	6.9	39	0 (1)	1(0)	-53.261836509 $446004842 / 1$	
	6.9	38	1	1	-53.261836508711166588/7	
	6.9	40	0	2	-45.689525312106483616/5	
	7.0	40	O(3)	3(0)	-45.689525 224609398 001/0	
	6.9	39	1	3	-45.689525 $137113211020 / 19$	
	7.0	40	2	0	-40.150722 $018158899312 / 1$	
	7.0	40	2(1)	1(2)	-40.150721759730 $984713 / 2$	
	7.0	40	3	1	-40.150721501300901 320/19	
	7.0	41	2	2	-38.354036147542773744/3	
0	4.75	25	0	0	-24.272661441386951 221/17	(1) l / u (2) $l / u-$ (3) l / u (4) l / u (1) l / u-(1) l / u (2) l / u-(3) l / u (2) l / u-(3) l / u (4) l / u-(4) l / u (1) l / u-(1) l / u (2) $l / u-$ (3) l / u (2) $l / u-$ (3) l / u
	4.75	25	0 (1)	1(0)	-24.271145065966337449/5	
	4.75	25	1	1	$-24.269628690545723677 / 3$	
	4.80	26	0 (2)	2(0)	$-17.262880924919592708 / 3$	
	4.80	26	2(1)	1(2)	$-17.261364549498978936 / 1$	
	4.80	26	0 (3)	3(0)	-17.147244 032195922 974/69	
	4.80	26	1(3)	3(1)	-17.145727 656775309 202/197	
	4.85	27	0(4)	4(0)	$-12.268350820957639835 / 2$	
	4.85	27	1(4)	4(1)	$-12.266834445537026063 / 0$	
	4.85	27	0 (5)	5(0)	-10.716668 140570039 193/86	
$\frac{1}{2}$	4.65	23	0	0	-15.499666362995942 163/0	(1) l / u (2) $l / u-$ (3) l / u (4) l / u (1) l / u (2) $l / u-$ (3) l / u (4) l / u (1) l / u (2) $l / u-$ (3) l / u (4) l / u (1) l / u
	4.65	23	O(1)	1(0)	-15.394859 895531839 812/09	
	4.60	23	1	1	-15.274247089243241363/55	
	4.70	24	0	2	-12.483951958 $383685683 / 78$	
	4.70	24	O(3)	3(0)	-11.977 $837759786882531 / 25$	
	4.70	24	1	3	-10.868 750334717617 546/2	
	4.70	24	2	0	-10.645 $429941389415702 / 696$	
	4.75	25	2(1)	1(2)	$\text { -9.233 } 034904664678 \text { 8928/4 }$	
	4.70	24	3	1	-8.123289305 $1251861552 / 0$	
	4.80	25	2	2	-7.447329538506703 3829/3	
1	4.70	24	0	0	-12.217 094893606486 592/0	(1) l / u (2) $l / u-$ (3) l / u (1) l / u-(4) l / u (2) l / u-(3) l / u (1) l / u-(4) l / u (2) $l / u-$ (3) l / u (1) l / u (2) $l / u-$ (3) l / u (1) l / u-(4) l / u (1) l / u-(4) l / u
	4.70	24	0 (1)	1(0)	-11.894715975085 $568322 / 0$	
	4.70	24	0 (1)	2(1)	$-10.978555703657970323 / 19$	
	4.75	25	0 (1)	3(2)	-9.548167682 $2377080567 / 2$	
	4.80	25	0 (1)	4(3)	-7.675 547200640074 3391/89	
	4.80	25	2(3)	1(0)	-5.416824334005 $8415298 / 5$	
	4.80	25	2	0	-5.240778747942 $1875797 / 3$	
	4.80	25	0 (1)	5(4)	-4.529 $8772329062984043 / 36$	
	4.85	26	2(3)	2(1)	-3.019285 192831561 2630/27	
	4.80	25	0 (1)	6(5)	-2.816900786934507 8248/1	

the wavefunctions, respectively, for which the desired number of significant figures of an eigenvalue being considered with the quantum numbers n_{x} and n_{y} is reached. In presenting the limiting energies $E_{(\infty)}$ in equation (2.6) the lower and upper bound evaluations, i.e. the eigenvalues of the von Neumann and Dirichlet problems, have been tabulated by means of a notation in which, for example, $1.493278 / 315$ means that $1.493278<E_{(\infty)}<1.493315$. Here, the lower bounds are truncated whereas the upper bounds are rounded up, if they are

Table 6. Lower and upper bounds to the eigenvalues of the two-well potentials $V\left(x, y ; a, Z^{2}\right)$ at $Z^{2}=20$ as a function of a.

a	ℓ	N	n_{x}	n_{y}	$E_{n_{x} n_{y}}$	Basis set
$-\frac{1}{2}$	7.3	49	0	0	-382.794825437725 50671/0	(1) l / u (2) $l / u-$ (3) l / u (4) l / u
	7.3	49	0(1)	1(0)	-382.794 $82543772550671 / 0$	
	7.3	49	1	1	-382.794 $82543772550671 / 0$	
	7.3	50	0	2	-370.306396584749528 19/8	(1) l / u (2) $l / u-$ (3) l / u
	7.3	49	0(3)	3(0)	-370.306396584749528 19/8	
	7.3	49	1	3	-370.306396584749528 19/8	
	7.3	50	2	0	-361.163108318486535 81/0	(1) l / u (2) $l / u-$ (3) l / u
	7.3	50	2(1)	1(2)	-361.163108318486535 81/0	
	7.3	49	3	1	-361.163108318486535 81/0	$\text { (4) } l / u$
	7.3	50	2	2	-357.896882466392549 09/8	$\text { (1) } l / u$
0	5.50	32	0	0	-187.45274183572111713/1	(1) l / u (2) $l / u-$ (3) l / u (4) l / u (1) l / u-(1) l / u (2) $l / u-$ (3) l / u (2) $l / u-$ (3) l / u (4) l / u-(4) l / u (1) l / u-(1) l / u (2) $l / u-$ (3) l / u (2) $l / u-$ (3) l / u
	5.50	31	0(1)	1(0)	-187.45274183572111704/0	
	5.50	31	1	1	$-187.45274183572111692 / 0$	
	5.55	33	$0(2)$	2(0)	$-175.11650734466243730 / 6$	
	5.55	33	2(1)	1(2)	$-175.11650734466243725 / 19$	
	5.55	33	0(3)	3(0)	$-175.11650734466238769 / 3$	
	5.55	33	1(3)	3(1)	$-175.11650734466238758 / 2$	
	5.60	34	0 (4)	4(0)	$-163.11588615454728057 / 45$	
	5.60	34	1(4)	4(1)	$-163.11588615454728047 / 34$	
	5.60	34	0(5)	5(0)	-163.115 886154536762 17/04	
$\frac{1}{2}$	5.35	29	0	0	-123.486212464952770 46/5	$\text { (1) } l / u$
	5.35	30	0(1)	1(0)	-123.486212342 $14550924 / 3$	$\begin{aligned} & \text { (2) } l / u-\text { (3) } l / u \\ & \text { (4) } l / u \end{aligned}$
	5.35	30	1	1	-123.486212219338227 89/8	
	5.35	30	0	2	-116.535029 $93696869519 / 8$	(1) l / u (2) $l / u-$ (3) l / u
	5.35	30	0(3)	3(0)	-116.535020 856874239 90/89	
	5.35	30	1	3	-116.53501177667861177/6	(4) l / u (1) l / u
	5.35	30	2	0	-111.77960975415690126/5	
	5.35	30	2(1)	1(2)	-111.779530816018060 83/2	(2) $l / u-$ (3) l / u
	5.35	30	3	1	-111.779451875 $84354564 / 3$	(4) l / u
	5.50	31	2	2	-109.271256591795413 09/8	(1) $1 / u$
1	5.45	31	0	0	-93.752663 561353941 555/46	(1) l / u (2) $l / u-$ (3) l / u (1) l / u-(4) l / u (2) $l / u-$ (3) l / u (1) l / u-(4) l / u (2) l / u-(3) l / u (1) l / u-(4) l / u (2) l / u-(3) l / u (1) l / u-(4) l / u (2) $l / u-$ (3) l / u
	5.45	31	$0(1)$	1(0)	-93.647517895 857672 160/51	
	5.50	32	$0(1)$	2(1)	-93.332 $477425955759823 / 0$	
	5.50	32	$0(1)$	3(2)	-92.808 $715952146584367 / 5$	
	5.50	32	0 (1)	4(3)	-92.078 $139010609340932 / 29$	
	5.50	32	2(3)	1(0)	-91.143313569269610768/6	
	5.50	32	2(3)	2(1)	-90.007380078 $860023320 / 16$	
	5.50	32	0 (1)	5(4)	-88.673954768 $441786580 / 78$	
	5.50	32	$0(1)$	6(5)	-87.147 $029595509710231 / 26$	
	5.50	32	2(3)	3(2)	-85.430 $875917598644492 / 88$	

positive. An inverse procedure is adopted for negative eigenvalues. The energy levels are introduced in ascending order of magnitude indicating also their respective basis sets.

Table 1 illustrates how the method of this work can be applied to show the dependence of a specific energy level on the boundary parameter ℓ. Clearly the lower and upper bound eigenvalues converge very rapidly to the limiting energy $E_{(\infty)}$ as ℓ increases, supporting numerically the theoretical findings of section 2 .

Table 7. Lower and upper bounds to the eigenvalues of the three-well potential $V\left(x, y ; a, b, c_{2}, c_{4}\right)$ for which $a=b=0, c_{2}=1$ and $c_{4}=2$.

n_{x}	n_{y}	$E_{n_{x} n_{y}}$	Basis set	ℓ	N
0	0	1.714654094198951 8361/73	(1) l / u	3.20	24
0 (1)	1(0)	4.024199895443115 5949/51	(2) $l / u-$ (3) l / u	3.25	24
1	1	$6.3337456966872793531 / 5$	(4) $1 / u$	3.25	24
0 (2)	2(0)	$7.6861652147004266239 / 47$	(1) l / u-(1) l / u	3.25	25
2(1)	1(2)	$9.9957110159445903821 / 30$	(2) l / u-(3) l / u	3.25	26
O(3)	3(0)	$12.579407545521240012 / 7$	(2) $l / u-$ (3) l / u	3.25	26
2	2	$13.657676335201901411 / 3$	(1) l / u	3.25	26
1(3)	3(1)	$14.888953346765403771 / 4$	(4) l / u-(4) l / u	3.25	24
O(4)	4(0)	$18.364219332089309754 / 66$	(1) l / u-(1) l / u	3.25	26
2(3)	3(2)	$18.550918666022714800 / 4$	(2) $l / u-$ (3) l / u	3.25	24
4(1)	1(4)	20.673765133333473 513/24	(2) $l / u-$ (3) l / u	3.25	25
3	3	$23.444160996843528189 / 95$	(4) l / u	3.25	24
2(4)	4(2)	24.335730452590784 542/54	(1) l / u-(1) l / u	3.25	26
0(5)	5(0)	24.944792389262699 178/80	(2) l / u-(3) l / u	3.30	26
1(5)	5(1)	27.254338190506862 936/9	(4) $l / u-$ (4) l / u	3.30	26
4(3)	3(4)	$29.228972783411597937 / 8$	(2) $l / u-$ (3) l / u	3.30	26
2(5)	5(2)	30.916303509764173 965/8	(2) $l / u-$ (3) l / u	3.30	27
O(6)	6(0)	$32.248454862419083094 / 101$	(1) l / u-(1) l / u	3.30	26
6(1)	1(6)	$34.558000663663246850 / 4$	(2) $l / u-$ (3) l / u	3.30	27
4	4	$35.013784569979667673 / 95$	(1) l / u	3.25	25

From tables 2-6 we may observe the behaviour of the low-lying state eigenvalues of the two-well oscillators as Z^{2} varies from 0.001 to 20 . It should be mentioned that Z^{2} controls the depth of wells, and at $Z^{2}=8$ the lower eigenvalues start to become nearly degenerate owing to the tunnelling through the potential barrier. This means that the two wells are sufficiently separated when $Z^{2}>8$, especially, for negative values of a. Such a situation appears evidently at $Z^{2}=20$, where the lower eigenvalues are closely bunched in quadruples. Note that the probability of tunnelling approaches zero for relatively small negative harmonic couplings, i.e. $Z^{2} \ll 8$, for which the system behaves like a single-well oscillator. On the other hand, Z^{2} should not be much greater than 20 since the eigenvalue problem then tends to a non-physical one. Actually, we perceived the weak convergence property of the method for large enough values of Z^{2}.

In the problem under discussion, two special cases of the parameters $a=b=1$ and $a=b=0$ can be distinguished. In the former, the potential has a circular symmetry, and hence the spectrum may also be examined by the radial part of the Schrödinger equation,

$$
\begin{equation*}
\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}-\frac{1}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}+\frac{l^{2}}{r^{2}}+v_{2} r^{2}+v_{4} r^{4}+v_{6} r^{6}\right) \mathcal{R}(r)=E \mathcal{R}(r) \tag{5.1}
\end{equation*}
$$

in another context. This is currently being investigated [19, 20]. In the latter, the system reduces to two independent oscillators, for which

$$
\begin{equation*}
E_{n_{x} n_{y}}=E_{n_{x}}+E_{n_{y}} \tag{5.2}
\end{equation*}
$$

where the $E_{n_{x}}\left(E_{n_{y}}\right)$ are the eigenvalues of the corresponding one-dimensional equation. So the results of this case may be checked by the accurate one-dimensional calculations in [16,21]. Furthermore, only for positive values of a, there are some two-dimensional results as well, which are quoted in tables 3 and 4 for comparison [22]. However, the inner product technique used in [22] seems to be insufficient in determining the aforementioned nearly degenerate eigenstates.

The energy level crossings may be analysed by the representation of the eigenvalues $E_{n_{x} n_{y}}$ as groups denoted by the integer number G such that $G=n_{x}+n_{y}$. It can be seen, from tables $2-6$, that the eigenvalues in the groups $2 G+1$, which are treated by either the sets (2) l / u or (3) l / u, remain doubly degenerate throughout the interval of $a, a \in(-1,1]$. This is a consequence of the interchange symmetry of the coordinates x and y. Additional doubly degenerate levels occur at $a=0$ and $a=1$ due to the relation in (5.2) and the circular symmetry of the potential, respectively. However, these particular degenerate levels split into two levels when a is different from 0 and 1. In [7] and [13], certain ordering rules for the eigenvalues of anharmonic oscillators belonging to a specific group G were investigated. Unfortunately, in the case of multiwell potentials, we could not devise similar rules which are independent of Z^{2}. In fact, the eigenvalues in a group G cannot be ordered according to an identical rule for small and large Z^{2} regimes, with a fixed a.

The reported truncation orders N imply that the trigonometric basis sets in (3.2) and (3.3) have virtually the same convergence properties. It is clear that there is no uncertainty in the tabulated results since we have estimated two-sided exact eigenvalue bounds. Furthermore, as is shown from table 7 the method can be extended to three-well potentials without any loss of accuracy. However, a fairly detailed numerical analysis of the spectrum of such an oscillator is left to a future study.

References

[1] Bender C M and Wu T T 1969 Phys. Rev. 1841231
[2] Bender C M and Wu T T 1973 Phys. Rev. D 71620
[3] Banks T, Bender C M and Wu T T 1973 Phys. Rev. D 83346
[4] Banks T and Bender C M 1973 Phys. Rev. D 83366
[5] Killingbeck J P and Jones M N 1986 J. Phys. A: Math. Gen. 19705
[6] Witwit M R M 1991 J. Phys. A: Math. Gen. 244535
[7] Hioe F T, MacMillen D and Montroll E W 1978 Phys. Rep. 43305
[8] Ari N and Demiralp M 1985 J. Math. Phys. 261179
[9] Fernandez F M, Meson A M and Castro E A 1985 Phys. Lett. 112A 107
[10] Vrscay E R and Handy C R 1989 J. Phys. A: Math. Gen. 22823
[11] Witwit M R M 1992 J. Math. Phys. 334196
[12] Witwit M R M and Killingbeck J P 1993 J. Phys. A: Math. Gen. 263659
[13] Taşeli H and Eid R 1996 Int. J. Quantum Chem. 59183
[14] Nunez M A 1994 Int. J. Quantum Chem. 50113
[15] Taşeli H 1992 J. Comput. Phys. 101252
[16] Taşeli H 1993 Int. J. Quantum Chem. 46319
[17] Taşeli H 1996 Accurate lower and upper bounds of the energy spectrum for the asymmetrical two-well potentials Int. J. Quantum Chem. in press
[18] Press H W, Flannery B P, Teukolsky S A and Vetterling W T 1986 Numerical Recipes (Cambridge: Cambridge University Press) p 335
[19] Taşeli H and Zafer A 1996 A Fourier-Bessel expansion for solving radial Schrödinger equation in two dimensions Int. J. Quantum Chem. in press
[20] Taşeli H and Zafer A 1996 Bessel basis with applications: N-dimensional isotropic polynomial oscillators Int. J. Quantum Chem. submitted
[21] Fernandez F M, Meson A M and Castro E A 1985 J. Phys. A: Math. Gen. 181389
[22] Witwit M R M 1995 Ind. J. Pure Appl. Phys. 33179

